Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^7 x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^7 \left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^7 x} d x ..............(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^7 x} + \frac{1}{1 + \tan^7 x} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{2 + co t^7 x + \tan^7 x}{\left( 1 + co t^7 x \right)\left( 1 + \tan^7 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + co t^7 x + \tan^7 x}{2 + co t^7 x + \tan^7 x}dx\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
Evaluate the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`