Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{2} \sqrt{1 - \cos2x}\ dx\]
\[ = \int_0^\frac{\pi}{2}\sqrt{2 \sin^2 x}\ dx\]
\[ = \int_0^\frac{\pi}{2} \sqrt{2} \sin x\ dx\]
\[ = - \sqrt{2} \left[ \cos x \right]_0^\frac{\pi}{2} \]
\[ = - \left( 0 - \sqrt{2} \right)\]
\[ = \sqrt{2}\]
\[\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`