हिंदी

Π ∫ 0 1 5 + 3 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

उत्तर

\[Let\ I = \int_0^\pi \frac{1}{5 + 3 \cos x} d\ x . Then, \]
\[I = \int_0^\pi \frac{1}{5 + 3\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} - 3 \tan^2 \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{5 + 2 \tan^2 \frac{x}{2}} dx\]
\[Let\ \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \pi, t = \infty \]
\[ \therefore I = \int_0^\infty \frac{dt}{5 + 2 t^2}\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\infty \frac{dt}{\frac{5}{2} + t^2}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} \frac{\sqrt{5}t}{\sqrt{2}} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 27 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_0^\pi \cos x\left| \cos x \right|dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×