Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi \frac{1}{5 + 3 \cos x} d\ x . Then, \]
\[I = \int_0^\pi \frac{1}{5 + 3\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} - 3 \tan^2 \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{5 + 2 \tan^2 \frac{x}{2}} dx\]
\[Let\ \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \pi, t = \infty \]
\[ \therefore I = \int_0^\infty \frac{dt}{5 + 2 t^2}\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\infty \frac{dt}{\frac{5}{2} + t^2}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} \frac{\sqrt{5}t}{\sqrt{2}} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`