Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{4} \frac{\tan^3 x}{1 + \cos 2x} d\ x . Then, \]
\[I = \int_0^\frac{\pi}{4} \frac{\tan^3 x}{2 \cos^2 x} d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\frac{\pi}{4} \tan^3 x \sec^2 x dx\]
\[Let \tan\ x = t . Then, \sec^2 x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{4}, t = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 t^3 dt\]
\[ \Rightarrow I = \frac{1}{2} \left[ \frac{t^4}{4} \right]_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{1}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{1}{8}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.