Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }= \int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
Put
When `xrarr1/2, thetararrpi/6`
\[\therefore I = \int_0^\frac{\pi}{6} \frac{1}{\left( 1 + \sin^2 \theta \right)\cos\theta} \times \cos\theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{1}{1 + \sin^2 \theta}d\theta\]
Dividing numerator and denominator by `cos^2theta, `we have
\[I = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{\sec^2 \theta + \tan^2 \theta}d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{1 + 2 \tan^2 \theta}d\theta\]
Now, put `tantheta = u`
`therefore sec^2thetad theta=du`
When `thetararr0, u rarr0`
When \[\theta \to \frac{\pi}{6}, u \to \frac{1}{\sqrt{3}}\]
\[\therefore I = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + 2 u^2}\]
\[ = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + \left( \sqrt{2}u \right)^2}\]
\[ = \left.\frac{\tan^{- 1} \sqrt{2}u}{\sqrt{2}}\right|_0^\frac{1}{\sqrt{3}} \]
\[ = \frac{1}{\sqrt{2}}\left( \tan^{- 1} \frac{\sqrt{2}}{\sqrt{3}} - 0 \right)\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \sqrt{\frac{2}{3}}\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`