हिंदी

∫ 1 2 0 1 ( 1 + X 2 ) √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
योग

उत्तर

\[\text{Let I }= \int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

Put

\[x = \sin\theta\]
`therefore dx=costheta d theta`
When \[x \to 0, \theta \to 0\]

When `xrarr1/2, thetararrpi/6`

\[\therefore I = \int_0^\frac{\pi}{6} \frac{1}{\left( 1 + \sin^2 \theta \right)\cos\theta} \times \cos\theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{1}{1 + \sin^2 \theta}d\theta\]

Dividing numerator and denominator by `cos^2theta, `we have

\[I = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{\sec^2 \theta + \tan^2 \theta}d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{1 + 2 \tan^2 \theta}d\theta\]

Now, put `tantheta = u`

`therefore sec^2thetad theta=du`

When `thetararr0, u rarr0`

When \[\theta \to \frac{\pi}{6}, u \to \frac{1}{\sqrt{3}}\]

\[\therefore I = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + 2 u^2}\]
\[ = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + \left( \sqrt{2}u \right)^2}\]
\[ = \left.\frac{\tan^{- 1} \sqrt{2}u}{\sqrt{2}}\right|_0^\frac{1}{\sqrt{3}} \]
\[ = \frac{1}{\sqrt{2}}\left( \tan^{- 1} \frac{\sqrt{2}}{\sqrt{3}} - 0 \right)\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \sqrt{\frac{2}{3}}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 58 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×