Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
योग
उत्तर
Let f(x) = `x^3 cos^3x`
f(– x) = `(- x)^3 cos^3 (- x)`
= `- x^3 cos^3 x`
= `- "f"(x)`
Here f(– x) = – f(x)
∴ f(x) is an odd function
∴ `int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x` = 0
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]
\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]
Evaluate the following integral:
\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]
Evaluate the following integral:
\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]
\[\int\limits_0^\pi x \log \sin x\ dx\]
\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]
\[\int\limits_0^{\pi/2} \cos x\ dx\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]