Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
बेरीज
उत्तर
Let f(x) = `x^3 cos^3x`
f(– x) = `(- x)^3 cos^3 (- x)`
= `- x^3 cos^3 x`
= `- "f"(x)`
Here f(– x) = – f(x)
∴ f(x) is an odd function
∴ `int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x` = 0
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]
\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]
\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]
\[\int_{- 2}^2 x e^\left| x \right| dx\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^2 x\left[ x \right] dx .\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]