Advertisements
Advertisements
प्रश्न
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
पर्याय
- \[\frac{a + b}{2} \int\limits_a^b f\left( b - x \right) dx\]
- \[\frac{a + b}{2} \int\limits_a^b f\left( b + x \right) dx\]
- \[\frac{b - a}{2} \int\limits_a^b f\left( x \right) dx\]
- \[\frac{b + a}{2} \int\limits_a^b f\left( x \right) dx\]
उत्तर
\[Let\, I = \int_a^b x f\left( x \right) d x .............(1)\]
\[ = \int_a^b \left( a + b - x \right) f\left( a + b - x \right) d x\]
\[ = \int_a^b \left( a + b - x \right) f\left( x \right) dx ...............(2)\]
\[ \text{Adding (1) and (2)}\]
\[2I = \int_a^b \left( x + a + b - x \right) f\left( x \right) d x\]
\[ = \left( a + b \right) \int_a^b f\left( x \right) d x \]
\[Hence\ I = \frac{a + b}{2} \int_a^b f\left( x \right) d x\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Prove that:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int x^3/(x + 1)` is equal to ______.