Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} dx ................(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} dx ...............\left[\text{Using }\int_0^a f\left( x \right) d x = \int_0^a f\left( a - x \right) d x \right]\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cotx} d x ..............(2)\]
\[\text{Adding (1) and (2)}\]
\[ 2I = \int_0^\frac{\pi}{2} \left( \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right) d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + cotx + 1 + \tan x}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{1 + \tan x + cotx + \tan xcotx}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{2 + \tan x + cotx}dx\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ 2I = \frac{\pi}{2}\]
\[ \therefore I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`