Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{3}{2}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{3}{2}} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 - \cos^2 x}}{\left( 1 - \cos x \right)^2}dx\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sin x}{\left( 1 - \cos x \right)^2}dx\]
\[Let\ 1 - \cos x = t, Then\ \sin x\ dx = dt\]
\[When\ x = \frac{\pi}{3}, t = \frac{1}{2} and\ x\ = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[ = \int_\frac{1}{2}^1 \frac{dt}{t^2}\]
\[ = \left[ - \frac{1}{t} \right]_\frac{1}{2}^1 \]
\[ = - 1 + 2\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`