Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{6} \cos x \cos 2x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{6} \cos x \left( \cos^2 x - \sin^2 x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{6} \left( 2 \cos^3 x - \cos x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{6} \left( 2 \cos x \left( 1 - \sin^2 x \right) - \cos x \right) dx\]
\[ \Rightarrow I = \left[ 2\left( \sin x - \frac{\sin^3 x}{3} \right) - \sin x \right]_0^\frac{\pi}{6} \]
\[ \Rightarrow I = \left[ 2\left( \frac{1}{2} - \frac{1}{24} \right) - \frac{1}{2} \right] - 0\]
\[ \Rightarrow I = \frac{5}{12}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.