Advertisements
Advertisements
प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
उत्तर
\[Let\ I = \int_0^{2a} f\left( x \right) d x\]
\[\text{By Additive property}\]
\[I = \int_0^a f\left( x \right) d x + \int_a^{2a} f\left( x \right) d x\]
\[\text{Consider the integral} \int_a^{2a} f\left( x \right) d x\]
\[Let \ x = 2a - t, \text{then }dx = - dt\]
\[When\ x = a . t = a, x = 2a, t = 0\]
\[Hence\, \int_a^{2a} f\left( x \right) d x = - \int_a^0 f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - t \right) d t = \int_0^a f\left( 2a - x \right) d x \]
Therefore
\[I = \int_0^a f\left( x \right) d x + \int_0^a f\left( 2a - x \right) d x \]
\[ = \int_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]
\[\text{Hence, proved} .\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
Prove that:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.