मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Using second fundamental theorem, evaluate the following: ed∫01e2x dx - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`

बेरीज

उत्तर

`int_0^1 "e"^(2x)  "d"x = ["e"^(2x)/2]_0^1`

= `1/2 ["e"^(2x)]_0^1`

= `1/2["e"^(2(1)) - "e"^(2(0))]`

= `1/2 ["e"^2 - "e"^0]`

= `1/2 ["e"^2 - 1]`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Integral Calculus – 1 - Exercise 2.8 [पृष्ठ ४७]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 2 Integral Calculus – 1
Exercise 2.8 | Q I.1 | पृष्ठ ४७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×