मराठी

Π ∫ 0 1 5 + 3 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

उत्तर

\[Let\ I = \int_0^\pi \frac{1}{5 + 3 \cos x} d\ x . Then, \]
\[I = \int_0^\pi \frac{1}{5 + 3\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} - 3 \tan^2 \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{5 + 2 \tan^2 \frac{x}{2}} dx\]
\[Let\ \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \pi, t = \infty \]
\[ \therefore I = \int_0^\infty \frac{dt}{5 + 2 t^2}\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\infty \frac{dt}{\frac{5}{2} + t^2}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} \frac{\sqrt{5}t}{\sqrt{2}} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 27 | पृष्ठ ३९

संबंधित प्रश्‍न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×