Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi \frac{1}{5 + 3 \cos x} d\ x . Then, \]
\[I = \int_0^\pi \frac{1}{5 + 3\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} - 3 \tan^2 \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{5 + 2 \tan^2 \frac{x}{2}} dx\]
\[Let\ \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \pi, t = \infty \]
\[ \therefore I = \int_0^\infty \frac{dt}{5 + 2 t^2}\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\infty \frac{dt}{\frac{5}{2} + t^2}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} \frac{\sqrt{5}t}{\sqrt{2}} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Find `int sqrt(10 - 4x + 4x^2) "d"x`