मराठी

Evaluate: π / 2 ∫ − π / 2 Cos X 1 + E X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

उत्तर

We have

\[I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos x}{\left( 1 + e^x \right)}dx . . . . . \left( i \right)\]

\[\text{ Using property } \int_a^b f\left( x \right) dx = \int_a^b f\left( a + b - x \right) dx, \text { we get }\]

\[I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos\left( 0 - x \right)}{1 + e^\left( 0 - x \right)}dx\]

\[ = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos x}{1 + e^{- x}}dx\]

\[ \Rightarrow I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} e^x \frac{\left( \cos x \right)}{\left( 1 + e^x \right)}dx . . . . . \left( ii \right)\]

Adding (i) and (ii), we get

\[2I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \cos x dx = \left[ \sin x \right]_\frac{- \pi}{2}^\frac{\pi}{2} = 1 + 1 = 2\]

\[ \therefore I = 1\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 2

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×