Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I }= \int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\] ...........(1)
Then,
\[I = \int_0^{2\pi} \log\left[ \sec\left( 2\pi - x \right) + \tan\left( 2\pi - x \right) \right]dx ...............\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^{2\pi} \log\left( \sec x - \tan x \right)dx .....................\left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_0^{2\pi} \left[ \log\left( \sec x + \tan x \right) + \log\left( \sec x - \tan x \right) \right]dx\]
\[ \Rightarrow 2I = \int_0^{2\pi} \log\left( \sec^2 x - \tan^2 x \right)dx\]
\[ \Rightarrow 2I = \int_0^{2\pi} \log1dx .................\left( 1 + \tan^2 x = \sec^2 x \right)\]
\[ \Rightarrow 2I = 0 ......................\left( \log1 = 0 \right)\]
\[ \Rightarrow I = 0\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is