Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - \int_0^{2\pi} 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
\[\text{Integrating second term by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left\{ \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \int_0^{2\pi} - 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) d x \right\}\]
\[ \Rightarrow I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - 4I\]
\[ \Rightarrow 5I = - 2 e^{2\pi} \frac{1}{\sqrt{2}} - 2 \frac{1}{\sqrt{2}} - 4 e^{2\pi} \frac{1}{\sqrt{2}} - 4 \frac{1}{\sqrt{2}}\]
\[ \Rightarrow 5I = - 3\sqrt{2} e^{2\pi} - 3\sqrt{2}\]
\[ \Rightarrow I = - \frac{3\sqrt{2}}{5}\left( e^{2\pi} + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.