मराठी

2 π ∫ 0 E X Cos ( π 4 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

उत्तर

\[Let\ I = \int_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - \int_0^{2\pi} 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
\[\text{Integrating second term by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left\{ \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \int_0^{2\pi} - 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) d x \right\}\]
\[ \Rightarrow I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - 4I\]
\[ \Rightarrow 5I = - 2 e^{2\pi} \frac{1}{\sqrt{2}} - 2 \frac{1}{\sqrt{2}} - 4 e^{2\pi} \frac{1}{\sqrt{2}} - 4 \frac{1}{\sqrt{2}}\]
\[ \Rightarrow 5I = - 3\sqrt{2} e^{2\pi} - 3\sqrt{2}\]
\[ \Rightarrow I = - \frac{3\sqrt{2}}{5}\left( e^{2\pi} + 1 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 52 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Evaluate the following:

Γ(4)


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×