Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_2^3 \frac{x}{x^2 + 1} d x . Then, \]
\[I = \frac{1}{2} \int_2^3 \frac{2x}{x^2 + 1}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \log \left( x^2 + 1 \right) \right]_2^3 \]
\[ \Rightarrow I = \frac{1}{2}\left( \log 10 - \log 5 \right)\]
\[ \Rightarrow I = \frac{1}{2}\log \frac{10}{5} \left[ \because \log a - \log b = \log \frac{a}{b} \right]\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.