Advertisements
Advertisements
प्रश्न
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
पर्याय
- \[9 \left( \frac{\pi}{2} \right)^9\]
- \[10 \left( \frac{\pi}{2} \right)^9\]
- \[\left( \frac{\pi}{2} \right)^9\]
- \[9 \left( \frac{\pi}{2} \right)^8\]
उत्तर
\[10 \left( \frac{\pi}{2} \right)^9 \]
\[\text{We have}, \]
\[ I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx\]
\[ = \left[ x^{10} \left( - \cos x \right) \right]_0^\frac{\pi}{2} - \int\limits_0^{\pi/2} \left[ 10 x^9 \int\sin x dx \right]dx\]
\[ = \left[ - x^{10} \cos x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} x^9 \left( - \cos x \right) dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \int\limits_0^{\pi/2} x^9 \cos x\ dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \left[ x^9 \sin x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} 9 x^8 \sin x dx\]
\[ = - \left[ \left( \frac{\pi}{2} \right)^{10} \times 0 - 0^{10} \cos 0 \right] + 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 - 0^9 \times 0 \right] - 90 \int\limits_0^{\pi/2} x^8 \sin x dx\]
\[ = 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 \right] - 90 I_8 \]
\[ = 10 \left( \frac{\pi}{2} \right)^9 - 90 I_8 \]
\[ \therefore I_{10} + 90 I_8 = 10 \left( \frac{\pi}{2} \right)^9\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`