मराठी

If I 10 = π / 2 ∫ 0 X 10 Sin X D X , Then the Value of I10 + 90i8 Is,9 ( π 2 ) 9,10 ( π 2 ) 9,( π 2 ) 9,9 ( π 2 ) 8 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 

पर्याय

  • \[9 \left( \frac{\pi}{2} \right)^9\]
  • \[10 \left( \frac{\pi}{2} \right)^9\]
  • \[\left( \frac{\pi}{2} \right)^9\]
  • \[9 \left( \frac{\pi}{2} \right)^8\]
MCQ

उत्तर

\[10 \left( \frac{\pi}{2} \right)^9 \]
\[\text{We have}, \]
\[ I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx\]
\[ = \left[ x^{10} \left( - \cos x \right) \right]_0^\frac{\pi}{2} - \int\limits_0^{\pi/2} \left[ 10 x^9 \int\sin x dx \right]dx\]
\[ = \left[ - x^{10} \cos x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} x^9 \left( - \cos x \right) dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \int\limits_0^{\pi/2} x^9 \cos x\ dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \left[ x^9 \sin x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} 9 x^8 \sin x dx\]
\[ = - \left[ \left( \frac{\pi}{2} \right)^{10} \times 0 - 0^{10} \cos 0 \right] + 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 - 0^9 \times 0 \right] - 90 \int\limits_0^{\pi/2} x^8 \sin x dx\]
\[ = 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 \right] - 90 I_8 \]
\[ = 10 \left( \frac{\pi}{2} \right)^9 - 90 I_8 \]
\[ \therefore I_{10} + 90 I_8 = 10 \left( \frac{\pi}{2} \right)^9\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 27 | पृष्ठ ११९

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×