Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \sin x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} - 2x \cos x dx\]
\[\text{Again, integratting by parts}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + \left\{ 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1 \sin x dx \right\}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \left[ - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} 0 - 0 + 2\frac{\pi}{2} - 0 + 0 - 2\]
\[ \Rightarrow I = \pi - 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
Solve each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Find `int sqrt(10 - 4x + 4x^2) "d"x`