Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos 2x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} + \left[ x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{\pi}{4} - 0\]
\[ \Rightarrow I = - \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`