मराठी

Π / 2 ∫ 0 X 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos 2x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} + \left[ x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{\pi}{4} - 0\]
\[ \Rightarrow I = - \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 30 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×