Advertisements
Advertisements
प्रश्न
Find : `∫_a^b logx/x` dx
उत्तर
Put `log x = t ⇒ 1/x dx = dt`
⇒ `x = a ⇒ t = loga & x = b ⇒ t = log b`
`therefore I = ∫_log a ^log b t dt`
= `t^2/2|_log a^log b`
= `1/2 [(log b)^2 - (log a)^2]`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.