मराठी

The Value of π ∫ 0 X Tan X Sec X + Cos X D X is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .

पर्याय

  • \[\frac{\pi^2}{4}\]
  • \[\frac{\pi^2}{2}\]
  • \[\frac{3 \pi^2}{2}\]
  • \[\frac{\pi^2}{3}\]

MCQ

उत्तर

\[ \frac{\pi^2}{4}\]
 
\[\text{We have}, \]

\[ I = \int_0^\pi \frac{x \tan x}{\sec x + \cos x} d x ..................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan\left( \pi - x \right)}{\sec\left( \pi - x \right) + \cos\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)tanx}{\sec x + \cos x} dx .......................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\pi \left[ \frac{x\tan x}{\sec x + \cos x} + \frac{\left( \pi - x \right)tan x}{\sec x + \cos x} \right] d x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\pi \frac{\pi \tan x}{\sec x + \cos x}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{sin x}{1 + \cos^2 x} dx\]
\[\text{Putting} \cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[When\ x \to 0; t \to 1\]
\[and\ x \to \pi; t \to - 1\]
\[ \Rightarrow I = \frac{\pi}{2} \int_1^{- 1} \frac{- dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \int_{- 1}^1 \frac{dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \left[ \tan^{- 1} t \right]_{- 1}^1 \]
\[ = \frac{\pi}{2}\left[ \tan^{- 1} \left( 1 \right) - \tan^{- 1} \left( - 1 \right) \right]\]
\[ = \frac{\pi}{2}\left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ = \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi^2}{4}\]
\[Hence\ I = \frac{\pi^2}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 3 | पृष्ठ ११७

संबंधित प्रश्‍न

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×