Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
पर्याय
- \[\frac{\pi^2}{4}\]
- \[\frac{\pi^2}{2}\]
- \[\frac{3 \pi^2}{2}\]
\[\frac{\pi^2}{3}\]
उत्तर
\[ I = \int_0^\pi \frac{x \tan x}{\sec x + \cos x} d x ..................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan\left( \pi - x \right)}{\sec\left( \pi - x \right) + \cos\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)tanx}{\sec x + \cos x} dx .......................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\pi \left[ \frac{x\tan x}{\sec x + \cos x} + \frac{\left( \pi - x \right)tan x}{\sec x + \cos x} \right] d x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\pi \frac{\pi \tan x}{\sec x + \cos x}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{sin x}{1 + \cos^2 x} dx\]
\[\text{Putting} \cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[When\ x \to 0; t \to 1\]
\[and\ x \to \pi; t \to - 1\]
\[ \Rightarrow I = \frac{\pi}{2} \int_1^{- 1} \frac{- dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \int_{- 1}^1 \frac{dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \left[ \tan^{- 1} t \right]_{- 1}^1 \]
\[ = \frac{\pi}{2}\left[ \tan^{- 1} \left( 1 \right) - \tan^{- 1} \left( - 1 \right) \right]\]
\[ = \frac{\pi}{2}\left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ = \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi^2}{4}\]
\[Hence\ I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
Prove that:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`