Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{where }h = \frac{b - a}{n}\]
Therefore,
\[I = \int_0^\frac{\pi}{2} \cos x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \cos0 + \cosh + \cos2h + . . . + \cos\left( n - 1 \right)h \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left( \left( n - 1 \right)\frac{h}{2} \right)\sin\frac{nh}{2}}{\sin\frac{h}{2}} \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4}}{\sin\frac{h}{2}} \right] ...............\left(\text{Using, }nh = \frac{\pi}{2} \right)\]
\[ = \lim_{h \to 0} \left[ \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times 2\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4} \right]\]
\[ = \lim_{h \to 0} \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times \lim_{h \to 0} 2\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4}\]
\[ = 2\cos\frac{\pi}{4} \sin\frac{\pi}{4} = 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Γ(1) is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`