Advertisements
Advertisements
प्रश्न
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
उत्तर
\[\int_1^2 \frac{1}{x^2} e^\frac{- 1}{x} d x\]
\[Let \frac{- 1}{x} = t, then \frac{1}{x^2} dx = dt\]
\[\text{When, }x \to 1 ; t \to - 1\]
\[\text{And }x \to 2 ; t \to \frac{- 1}{2}\]
Therefore the integral becomes
\[ \int_{- 1}^\frac{- 1}{2} e^t d t\]
\[ = \left[ e^t \right]_{- 1}^\frac{- 1}{2} \]
\[ = e^\frac{- 1}{2} - e^{- 1} \]
\[ = \frac{\sqrt{e} - 1}{e}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.