मराठी

Π / 4 ∫ − π / 4 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]
बेरीज

उत्तर

\[Let\ I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \sin^2 x d x\]
\[Here\ f\left( x \right) = \sin^2 x\]
\[f\left( - x \right) = \sin^2 \left( - x \right) = \sin^2 x = f\left( x \right)\]
\[\text{Hence} \sin^2 x \text{is an even function}\]
Therefore,
\[I = 2 \int_0^\frac{\pi}{4} \sin^2 x d x\]
\[ = 2 \int_0^\frac{\pi}{4} \left( \frac{1 - \cos2x}{2} \right)dx\]
\[ = \int_0^\frac{\pi}{4} \left( 1 - \cos2x \right) dx\]
\[ = \left[ x - \frac{\sin2x}{2} \right]_0^\frac{\pi}{4} \]
\[ = \frac{\pi}{4} - \frac{1}{2}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 26 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×