Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \sin^2 x d x\]
\[Here\ f\left( x \right) = \sin^2 x\]
\[f\left( - x \right) = \sin^2 \left( - x \right) = \sin^2 x = f\left( x \right)\]
\[\text{Hence} \sin^2 x \text{is an even function}\]
Therefore,
\[I = 2 \int_0^\frac{\pi}{4} \sin^2 x d x\]
\[ = 2 \int_0^\frac{\pi}{4} \left( \frac{1 - \cos2x}{2} \right)dx\]
\[ = \int_0^\frac{\pi}{4} \left( 1 - \cos2x \right) dx\]
\[ = \left[ x - \frac{\sin2x}{2} \right]_0^\frac{\pi}{4} \]
\[ = \frac{\pi}{4} - \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`