Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{4} e^x \sin x d x ..............(1)\]
\[ = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} e^x \cos x dx\]
\[ = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} e^x \sin x dx\]
\[ \Rightarrow I = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} - I ..............\left[\text{Using (1)} \right] \]
\[ \Rightarrow 2I = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} \]
\[ = - \frac{1}{\sqrt{2}} e^\frac{\pi}{4} + 1 + \frac{1}{\sqrt{2}} e^\frac{\pi}{4} - 0\]
\[ = 1\]
\[\text{Hence }I = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If f is an integrable function, show that
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.