Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) d x . Then, \]
\[Let \sin x = t . Then, \cos x dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 2t \tan^{- 1} t dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \frac{t^2}{1 + t^2} dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \left( \frac{1 + t^2}{1 + t^2} - \frac{1}{1 + t^2} \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - \left[ t - \tan^{- 1} t + \right]_0^1 \]
\[ \Rightarrow I = 1 \tan^{- 1} 1 - 0 - 1 + \tan^{- 1} 1 + 0\]
\[ \Rightarrow I = \frac{\pi}{4} - 1 + \frac{\pi}{4}\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`