Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) d x . Then, \]
\[Let \sin x = t . Then, \cos x dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 2t \tan^{- 1} t dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \frac{t^2}{1 + t^2} dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \left( \frac{1 + t^2}{1 + t^2} - \frac{1}{1 + t^2} \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - \left[ t - \tan^{- 1} t + \right]_0^1 \]
\[ \Rightarrow I = 1 \tan^{- 1} 1 - 0 - 1 + \tan^{- 1} 1 + 0\]
\[ \Rightarrow I = \frac{\pi}{4} - 1 + \frac{\pi}{4}\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.