English

Π / 2 ∫ 0 2 Sin X Cos X Tan − 1 ( Sin X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

Solution

\[Let\ I = \int_0^\frac{\pi}{2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) d x . Then, \]
\[Let \sin x = t . Then, \cos x dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 2t \tan^{- 1} t dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \frac{t^2}{1 + t^2} dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \left( \frac{1 + t^2}{1 + t^2} - \frac{1}{1 + t^2} \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - \left[ t - \tan^{- 1} t + \right]_0^1 \]
\[ \Rightarrow I = 1 \tan^{- 1} 1 - 0 - 1 + \tan^{- 1} 1 + 0\]
\[ \Rightarrow I = \frac{\pi}{4} - 1 + \frac{\pi}{4}\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 49 | Page 40

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_1^e \log x\ dx =\]

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×