Advertisements
Advertisements
Question
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Solution
\[\int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{5}{2}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{5}{2}} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sin x}{\left( 1 - \cos x \right)^3}dx\]
\[ = - \frac{1}{2} \left[ \left( 1 - \cos x \right)^{- 2} \right]_\frac{\pi}{3}^\frac{\pi}{2} \]
\[ = - \frac{1}{2}\left[ 1 - 4 \right]\]
\[ = \frac{3}{2}\]
APPEARS IN
RELATED QUESTIONS
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.