Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} d\ x . Then, \]
\[I = \int_0^1 \frac{\left( \frac{1}{x^2} - 1 \right)}{\left( x + \frac{1}{x} \right)^2} dx\]
\[Let\ x + \frac{1}{x} = t . Then, 1 - \frac{1}{x^2} dx = dt\]
\[When\ x = 0, t\ = \infty\ and\ x\ = 1, t = 2\]
\[ \therefore I = \int_\infty^2 \frac{- dt}{t^2}\]
\[ \Rightarrow I = \left[ \frac{1}{t} \right]_\infty^2 \]
\[ \Rightarrow I = \frac{1}{2} - 0\]
\[ \Rightarrow I = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.