Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here, }a = 0, b = 4, f\left( x \right) = x + e^{2x} , h = \frac{4 - 0}{n} = \frac{4}{n}\]
Therefore,
\[I = \int_0^4 \left( x + e^{2x} \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + e^0 \right) + \left( h + e^{2h} \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)h + e^{2\left( n - 1 \right)h} \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h\left\{ 1 + 2 + . . . . . + \left( n - 1 \right)h \right\} + e^0 + e^{2h} + e^{4h} + . . . . . . . . . + e^{2\left( n - 1 \right)h} \right]\]
\[ = \lim_{h \to 0} h\left[ h\frac{n\left( n - 1 \right)}{2} + \frac{\left( e^{2h} \right)^n - 1}{e^{2h} - 1} \right]\]
\[ = \lim_{n \to \infty} \frac{16}{n^2} \times \frac{n\left( n - 1 \right)}{2} + \lim_{h \to 0} \frac{e^8 - 1}{\frac{e^{2h} - 1}{h}}\]
\[ = \lim_{n \to \infty} 8\left( 1 - \frac{1}{n} \right) + \lim_{h \to 0} \frac{e^8 - 1}{\frac{2( e^{2h} - 1)}{2h}}\]
\[ = 8 + \frac{e^8 - 1}{2}\]
\[ = \frac{15 + e^8}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Evaluate each of the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`