Advertisements
Advertisements
Question
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Solution
let a + b - x = t
⇒ dx = -dt
when x = a,t = b and x = b,t = a
`int_a^b ƒ("x") d"x" = -int_b^aƒ(a + b -"t")d"t"`
= `int_a^bƒ(a + b -"t")d"t" ...[∵ int_a^b ƒ("x") d"x" = -int_b^a ƒ("x") d"x"]`
= `int_a^bƒ(a + b -"x")d"x" ...[∵ int_a^b ƒ("x") d"x" = int_a^b ƒ("t") d"t"]`
Hence proved.
let `I = int_(π/6)^(π/3) (d"x")/(1+ sqrt(tan "x")) = int_(π/6)^(π/3)(sqrt(cos"x")d"x")/(sqrt(cos"x")+ sqrt(sin"x"))` .....(ii)
Then, using the property from (i)
`I = int_(π/6)^(π/3) (sqrtcos(π/3 + π/6 - "x") d"x")/ (sqrtcos(π/3 + π/6 - "x") + sqrtsin(π/3 + π/6 - "x"))`
= `int_(π/6)^(π/3) (sqrt(sin"x")d"x")/(sqrt(sin"x") + sqrt(cos"x")` ......(iii)
Adding (ii) and (iii), we get
`2I = int_(π/6)^(π/3)d"x" = ["x"](π/3)/(π/6) = π/3 - π/6 = π/6`
⇒ `I = π/12`
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
Γ(4)
`int x^3/(x + 1)` is equal to ______.