Advertisements
Advertisements
Question
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
Solution
\[I = \int e^{2x} \sin\left( 3x + 1 \right)dx\]
Applying integration by parts, taking
\[\sin\left( 3x + 1 \right)\] as first function and \[e^{2x}\]as second function, we get
\[I = \sin\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\sin\left( 3x + 1 \right)\int e^{2x} dx \right]dx\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ 3\cos\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right)dx\]
Again applying integration by parts, taking
\[I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\cos\left( 3x + 1 \right)\int e^{2x} dx \right]dx \right\}\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ - 3\sin\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx \right\}\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2}dx + \frac{3}{2}\int e^{2x} \sin\left( 3x + 1 \right)dx \right]\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + C\]
\[ \Rightarrow I + \frac{9}{4}I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + C\]
\[ \Rightarrow \frac{13}{4}I = \frac{e^{2x}}{4}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + C\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + K, \text { where } K = \frac{4}{13}C\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
Evaluate the following:
`Γ (9/2)`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: