English

Evaluate : \[\Int E^{2x} \Cdot \Sin \Left( 3x + 1 \Right) Dx\] . - Mathematics

Advertisements
Advertisements

Question

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .

Solution

\[I = \int e^{2x} \sin\left( 3x + 1 \right)dx\]

Applying integration by parts, taking

\[\sin\left( 3x + 1 \right)\] as first function and \[e^{2x}\]as second function, we get

\[I = \sin\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\sin\left( 3x + 1 \right)\int e^{2x} dx \right]dx\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ 3\cos\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right)dx\]

Again applying integration by parts, taking

\[\cos\left( 3x + 1 \right)\] as first function and
\[e^{2x}\]as second function, we get

\[I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\cos\left( 3x + 1 \right)\int e^{2x} dx \right]dx \right\}\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ - 3\sin\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx \right\}\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2}dx + \frac{3}{2}\int e^{2x} \sin\left( 3x + 1 \right)dx \right]\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + C\]

\[ \Rightarrow I + \frac{9}{4}I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + C\]

\[ \Rightarrow \frac{13}{4}I = \frac{e^{2x}}{4}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + C\]

\[ \Rightarrow I = \frac{e^{2x}}{13}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + K, \text { where } K = \frac{4}{13}C\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 2

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


Evaluate the following:

`Γ (9/2)`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×