English

Π / 2 ∫ 0 1 1 + Cot X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]
Sum

Solution

\[Let I = \int_0^\frac{\pi}{2} \frac{1}{1 + cotx} d x .....................(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cot\left( \frac{\pi}{2} - x \right)} d x ...................\left[\text{Using }\int_0^a f\left( x \right) d x = \int_0^a f\left( a - x \right) d x \right]\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} d x ..............(2)\]

\[\text{Adding (1) and (2)}\]

\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + cotx} + \frac{1}{1 + \tan x} d x \]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan x + 1 + cotx}{\left( 1 + cotx \right)\left( 1 + \tan x \right)} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{1 + \tan x + cotx + \tan x cotx}dx\]

\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{2 + \tan x + cotx} dx\]

\[ = \int_0^\frac{\pi}{2} dx\]

\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]

\[Hence\ , I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 94]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 2 | Page 94

RELATED QUESTIONS

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×