English

Π / 2 ∫ 0 √ Cot X √ Cot X + √ Tan X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]
Sum

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{tanx}} d x ................(1) \]

\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\cot\left( \frac{\pi}{2} - x \right)}}{\sqrt{\cot\left( \left( \frac{\pi}{2} - x \right) \right)} + \sqrt{\tan\left( \frac{\pi}{2} - x \right)}} dx ................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]

\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{tanx}}{\sqrt{tanx} + \sqrt{cotx}} dx ..............(2)\]

\[ \text{Adding (1) and (2})\]

\[2I = \int_0^\frac{\pi}{2} \left( \frac{\sqrt{cotx}}{\sqrt{cotx} + \sqrt{tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \right) d x \]

\[ = \int_0^\frac{\pi}{2} dx \]

\[ = \left[ x \right]_0^\frac{\pi}{2} \]

\[ = \frac{\pi}{2}\]

\[Hence\, I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 94]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 3 | Page 94

RELATED QUESTIONS

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×