English

Π / 2 ∫ 0 Sin 2 X ( 1 + Cos X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]

Sum

Solution

\[\int_0^\frac{\pi}{2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos^2 x}{\left( 1 + \cos x \right)^2} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x}{1 + \cos x} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x - 1 + 1}{\left( 1 + \cos x \right)} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{2 - \left( 1 + \cos x \right)}{\left( 1 + \cos x \right)} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{2}{1 + \cos x}dx - \int_0^\frac{\pi}{2} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{2\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx - \int_0^\frac{\pi}{2} dx\]

\[ = 2 \int_0^\frac{\pi}{2} \frac{1 - \cos x}{\sin^2 x}dx - \left[ x \right]_0^\frac{\pi}{2} \]

\[ = 2 \int_0^\frac{\pi}{2} \left( \ cosec^2 x - \ cosec x\ cotx \right) dx - \left[ x \right]_0^\frac{\pi}{2} \]

\[ = 2 \left[ - cotx + \ cosec x \right]_0^\frac{\pi}{2} - \left[ x \right]_0^\frac{\pi}{2} \]

\[ = 2 - \frac{\pi}{2}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 11 | Page 121

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×