Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
Solution
\[\int_0^\frac{\pi}{2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos^2 x}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x}{1 + \cos x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x - 1 + 1}{\left( 1 + \cos x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2 - \left( 1 + \cos x \right)}{\left( 1 + \cos x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2}{1 + \cos x}dx - \int_0^\frac{\pi}{2} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx - \int_0^\frac{\pi}{2} dx\]
\[ = 2 \int_0^\frac{\pi}{2} \frac{1 - \cos x}{\sin^2 x}dx - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 \int_0^\frac{\pi}{2} \left( \ cosec^2 x - \ cosec x\ cotx \right) dx - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 \left[ - cotx + \ cosec x \right]_0^\frac{\pi}{2} - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 - \frac{\pi}{2}\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Prove that:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.