Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos^2 x}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x}{1 + \cos x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x - 1 + 1}{\left( 1 + \cos x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2 - \left( 1 + \cos x \right)}{\left( 1 + \cos x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2}{1 + \cos x}dx - \int_0^\frac{\pi}{2} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx - \int_0^\frac{\pi}{2} dx\]
\[ = 2 \int_0^\frac{\pi}{2} \frac{1 - \cos x}{\sin^2 x}dx - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 \int_0^\frac{\pi}{2} \left( \ cosec^2 x - \ cosec x\ cotx \right) dx - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 \left[ - cotx + \ cosec x \right]_0^\frac{\pi}{2} - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 - \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Find: `int logx/(1 + log x)^2 dx`