Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{6} \cos^{- 3} 2\theta \sin\ 2\theta\ d\ \theta . Then, \]
\[I = \int_0^\frac{\pi}{6} \frac{\sin 2\theta}{\cos^3 2\theta} d \theta\]
\[Let\ \cos 2\theta = t . Then, - 2 \sin 2\theta\ d\theta = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \frac{\pi}{6}, t = \frac{1}{2}\]
\[ \therefore I = \frac{- 1}{2} \int_1^\frac{1}{2} \frac{dt}{t^3}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \frac{1}{2 t^2} \right]_1^\frac{1}{2} \]
\[ \Rightarrow I = \frac{1}{2}\left( 2 - \frac{1}{2} \right)\]
\[ \Rightarrow I = \frac{3}{4}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f is an integrable function, show that
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Find: `int logx/(1 + log x)^2 dx`