हिंदी

∞ ∫ 0 Log X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[Putting\ x = \tan \theta\]

\[ \Rightarrow dx = \sec^2 \theta d\theta\]

\[When\ x \to 0 ; \theta \to 0\]

\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]

\[\text{Now, integral becomes},\]

\[I = \int\limits_0^\frac{\pi}{2} \frac{\log \left( \tan \theta \right)}{1 + \tan^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta ...............\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log\left[ \tan \left( \frac{\pi}{2} - \theta \right) \right] d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta ..................\left( 2 \right)\]
\[\text{Adding} \left( 1 \right)and \left( 2 \right), \text{we get}\]

\[2I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta + \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \right) + \log \left( \cot \theta \right) \right] d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \times \cot \theta \right) \right] d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left( \log 1 \right) d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left( 0 \right) d\theta\]

\[ \Rightarrow 2I = 0\]

\[ \Rightarrow I = 0\]

\[ \therefore \int\limits_0^\infty \frac{\log x}{1 + x^2} dx = 0\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 8 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×