Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
\[Putting\ x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[When\ x \to 0 ; \theta \to 0\]
\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]
\[\text{Now, integral becomes},\]
\[I = \int\limits_0^\frac{\pi}{2} \frac{\log \left( \tan \theta \right)}{1 + \tan^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta ...............\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log\left[ \tan \left( \frac{\pi}{2} - \theta \right) \right] d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta ..................\left( 2 \right)\]
\[\text{Adding} \left( 1 \right)and \left( 2 \right), \text{we get}\]
\[2I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta + \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \right) + \log \left( \cot \theta \right) \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \times \cot \theta \right) \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left( \log 1 \right) d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left( 0 \right) d\theta\]
\[ \Rightarrow 2I = 0\]
\[ \Rightarrow I = 0\]
\[ \therefore \int\limits_0^\infty \frac{\log x}{1 + x^2} dx = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: