Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\frac{\pi}{2} \left( 2 \log \cos x - \log\sin2x \right) d x\]
\[ = \int_0^\frac{\pi}{2} \left[ 2 \log \cos x - \log\left( 2\sin x \cos x \right) \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left( 2\log\cos x - \log2 - \log\sin x - \log\cos x \right)dx\]
\[ = \int_0^\frac{\pi}{2} \left( \log\cos x - \log2 - \log\sin x \right)dx\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\sin x dx\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\sin\left( \frac{\pi}{2} - x \right) dx ..........................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\cos x dx\]
\[ = - \log2 \left[ x \right]_0^\frac{\pi}{2} \]
\[ = - \frac{\pi}{2} \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Find: `int logx/(1 + log x)^2 dx`