Advertisements
Advertisements
प्रश्न
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
उत्तर
\[\text{We have}, \]
\[ \int_0^a 3 x^2 d x = 8\]
\[ \Rightarrow \left[ 3\frac{x^3}{3} \right]_0^a = 8\]
\[ \Rightarrow \left[ x^3 \right]_0^a = 8\]
\[ \Rightarrow a^3 - 0 = 8\]
\[ \Rightarrow a = \sqrt[3]{8}\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`Γ (9/2)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is