Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^2 \log\ x\ d\ x\ . Then, \]
\[I = \int_1^2 1 \log x\ d\ x\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left[ x \log x \right]_1^2 - \int_1^2 \frac{1}{x} x\ d\ x\]
\[ \Rightarrow I = \left[ x \log x \right]_1^2 - \int_1^2 d x\]
\[ \Rightarrow I = \left[ x \log x \right]_1^2 - \left[ x \right]_1^2 \]
\[ \Rightarrow I = 2 \log 2 - 2 + 1\]
\[ \Rightarrow I = 2 \log 2 - 1\]
APPEARS IN
संबंधित प्रश्न
Prove that:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Find: `int logx/(1 + log x)^2 dx`