English

2 ∫ 1 Log X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_1^2 \log\ x\ dx\]

Solution

\[Let\ I = \int_1^2 \log\ x\ d\ x\ . Then, \]
\[I = \int_1^2 1 \log x\ d\ x\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left[ x \log x \right]_1^2 - \int_1^2 \frac{1}{x} x\ d\ x\]
\[ \Rightarrow I = \left[ x \log x \right]_1^2 - \int_1^2 d x\]
\[ \Rightarrow I = \left[ x \log x \right]_1^2 - \left[ x \right]_1^2 \]
\[ \Rightarrow I = 2 \log 2 - 2 + 1\]
\[ \Rightarrow I = 2 \log 2 - 1\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 32 | Page 17

RELATED QUESTIONS

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

\[\int\limits_1^e \log x\ dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×