Advertisements
Advertisements
Question
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
Solution
\[\int_1^3 \left| x^2 - 4 \right| d x\]
\[ = \int_1^2 - \left( x^2 - 4 \right) dx + \int_2^3 \left( x^2 - 4 \right) dx\]
\[ = \left[ - \frac{x^3}{3} + 4x \right]_1^2 + \left[ \frac{x^3}{3} - 4x \right]_2^3 \]
\[ = \frac{- 8}{3} + 8 + \frac{1}{3} - 4 + 9 - 12 - \frac{8}{3} + 8\]
\[ = 4\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
`int x^3/(x + 1)` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`