Advertisements
Advertisements
Question
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
Solution
We have,
\[\left| \sin2\pi x \right| = \begin{cases}\left( \sin2\pi x \right),& 0 \leq x \leq \frac{1}{2}\\ - \left( \sin2\pi x \right),& \frac{1}{2} \leq x \leq 1\end{cases}\]
\[ \therefore \int_0^1 \left| \sin2\pi x \right| d x = \int_0^\frac{1}{2} \sin2\pi x dx + \int_\frac{1}{2}^1 - \sin2\pi x dx\]
\[ = \left[ \frac{- \cos2\pi x}{2\pi} \right]_0^\frac{1}{2} + \left[ \frac{\cos2\pi x}{2\pi} \right]_\frac{1}{2}^1 \]
\[ = \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi}\]
\[ = \frac{2}{\pi}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Write the coefficient a, b, c of which the value of the integral
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.