Advertisements
Advertisements
Question
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Solution
\[Let, I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} d x ...........(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin\left( \pi - x \right)}{1 + \cos^2 \left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \cos^2 x} d x ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \left[ \frac{x \sin x}{1 + \cos^2 x} + \frac{\left( \pi - x \right) \sin x}{1 + \cos^2 x} \right] d x\]
\[ = \int_0^\pi \frac{\pi \sin x}{1 + \cos^2 x} d x \]
\[ = \pi \left[ - \tan^{- 1} \left( cosx \right) \right]_0^\pi \]
\[ = - \pi\left[ \tan^{- 1} \left( - 1 \right) - \tan^{- 1} \left( 1 \right) \right]\]
\[ = - \pi\left( - \frac{\pi}{4} - \frac{\pi}{4} \right)\]
\[ = \frac{\pi^2}{2}\]
\[Hence, I = \frac{\pi^2}{4}\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`