Advertisements
Advertisements
Question
Solution
\[Let I = \int_{- 2}^3 \frac{1}{x + 7} d x . Then, \]
\[I = \left[ \log \left( x + 7 \right) \right]_{- 2}^3 \]
\[ \Rightarrow I = \log 10 - \log 5\]
\[ \Rightarrow I = \log \frac{10}{5} \left[ \because \log a - \log b = \log\frac{a}{b} \right]\]
\[ \Rightarrow I = \log 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`