English

∞ ∫ 0 Log ( X + 1 X ) 1 1 + X 2 D X = (A) π Ln 2 (B) −π Ln 2 (C) 0 (D)− π 2 Ln 2 - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Options

  • π ln 2

  • −π ln 2

  • 0

  • \[- \frac{\pi}{2}\ln 2\]

MCQ

Solution

π ln 2

\[\int_0^\infty \log \left( x + \frac{1}{x} \right) \frac{1}{1 + x^2}dx\]

Substitute x = tan θ

⇒ dx = sec2 θ dθ.

when,

= 0  ⇒ θ = 0

\[x = \infty \Rightarrow \theta = \frac{\pi}{2}\]

\[ \int_0^\frac{\pi}{2} \left( \tan \theta + \frac{1}{\tan \theta} \right)\frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]

\[ \int_0^\frac{\pi}{2} \log \left( \frac{\tan^2 \theta + 1}{\tan\theta} \right) \frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)\frac{1}{\sec^2 \theta} \times \sec^2 \theta d\theta ................\left[ \because 1 + \tan^2 \theta = \sec^2 \theta \right]\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)d\theta\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{1}{\sin \theta . \cos \theta} \right)d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \left[ \log \sin \theta + \log \cos \theta \right]d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \sin \theta d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

Let us consider, 

\[\int_0^\frac{\pi}{2} \log \sin \theta d\theta = I .................(1)\]

\[ \Rightarrow I = \int_0^\frac{\pi}{2} \log \left( \sin \left( \frac{\pi}{2} - \theta \right) \right)d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \cos \theta d\theta ..................(2)\]

\[\text{Adding (1) and (2)}\]

\[2I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta + \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \left( \sin 2\theta \right)d\theta - \int_0^\frac{\pi}{2} \log 2d\theta\]

\[\text{Let us consider } 2\theta = t\]

\[2d\theta = dt\]

\[2I = \frac{1}{2} \int_0^\pi \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2\]

\[2I = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2 ................\left[ \because \sin \theta \text{ is positive in both } 1^{st} \text{ and }2^{nd} \text{ quadrants} \right]\]

\[2I = I - \frac{\pi}{2}\log 2\]

\[2I - I = - \frac{\pi}{2}\log 2\]

\[I = - \frac{\pi}{2}\log 2, where I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta\]

\[Now, \]

\[ - \int_0^\frac{\pi}{2} \log\left( \sin \theta \right)d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

\[ - 2 \int_0^\frac{\pi}{2} \log \sin \theta d\theta = - 2 \times I\]

\[ = - 2 \times - \frac{\pi}{2}\log 2 .............\left[ \because \text{where} I = - \frac{\pi}{2}\log2 \right]\]

\[ = \pi \log 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 37 | Page 120

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×