Advertisements
Advertisements
Question
Solution
\[\text{Let I }=\int_0^1 x\log\left( 1 + 2x \right)dx\]
Applying integration by parts, we have
\[I = \log\left( 1 + 2x \right)\frac{x^2}{2}_0^1 - \int_0^1 \left( \frac{2}{1 + 2x} \right) \times \frac{x^2}{2}dx\]
\[ = \frac{1}{2}\left( \log3 - 0 \right) - \int_0^1 \frac{x^2}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{4 x^2 - 1 + 1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{\left( 2x + 1 \right)\left( 2x - 1 \right)}{1 + 2x}dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \left( 2x - 1 \right)dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]
\[= \left.\frac{1}{2}\log3 - \frac{1}{4} \times \frac{\left( 2x - 1 \right)^2}{2 \times 2}\right|_0^1 - \left.\frac{1}{4} \times \frac{\log\left( 1 + 2x \right)}{2}\right|_0^1 \]
\[ = \frac{1}{2}\log3 - \frac{1}{16}\left( 1 - 1 \right) - \frac{1}{8}\left( \log3 - \log1 \right)\]
\[ = \frac{1}{2}\log3 - 0 - \frac{1}{8}\log3 ....................\left( \log1 = 0 \right)\]
\[ = \frac{3}{8}\log3\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`