English

∫ 1 0 X Log ( 1 + 2 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
Sum

Solution

\[\text{Let I }=\int_0^1 x\log\left( 1 + 2x \right)dx\]

Applying integration by parts, we have

\[I = \log\left( 1 + 2x \right)\frac{x^2}{2}_0^1 - \int_0^1 \left( \frac{2}{1 + 2x} \right) \times \frac{x^2}{2}dx\]
\[ = \frac{1}{2}\left( \log3 - 0 \right) - \int_0^1 \frac{x^2}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{4 x^2 - 1 + 1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{\left( 2x + 1 \right)\left( 2x - 1 \right)}{1 + 2x}dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \left( 2x - 1 \right)dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]

\[= \left.\frac{1}{2}\log3 - \frac{1}{4} \times \frac{\left( 2x - 1 \right)^2}{2 \times 2}\right|_0^1 - \left.\frac{1}{4} \times \frac{\log\left( 1 + 2x \right)}{2}\right|_0^1 \]
\[ = \frac{1}{2}\log3 - \frac{1}{16}\left( 1 - 1 \right) - \frac{1}{8}\left( \log3 - \log1 \right)\]
\[ = \frac{1}{2}\log3 - 0 - \frac{1}{8}\log3 ....................\left( \log1 = 0 \right)\]
\[ = \frac{3}{8}\log3\]

 

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 65 | Page 18

RELATED QUESTIONS

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×